
Dataflow Analysis (Blackboard Lecture)

CS 4447 / CS 9545 Stephen M. Watt

A Flow Graph

One entry and one exit for each basic block.

Dataflow Analysis

- Concerns itself with sets of "properties" that may be true or false at each point in a program.
- E.g. *ith* variable has been assigned.
 jth variable has been used.
 kth definition has been used.

Dataflow Analysis

- The set of properties that are true before a statement s is executed is denoted **In[s]**.
- The set of properties that are true after a statement s is executed is denoted **Out[s]**.
- Dataflow analysis propagates information through the flow graph, either forward (along the arrows), or backward (opposite the arrows).

Data Flow Analysis

- The execution of statement s changes which properties are true. Out[s] = f_s(In[s]) forward transfer function In[s] = f_s(Out[s]) backward transfer function
- For a sequence in a basic block $B = [s_1; s_2; ...; s_n]$, we have

```
Out[s_1] = In[s_2]Out[s_2] = In[s_3]...Out[s_{n-1}] = In[s_n]In[B] = In[s_1]Out[B] = Out[s_n]
```

Gen and Kill

- The set of properties that are no longer valid after B even if they were valid before B is said to be "killed by" B and is denoted Kill[B].
- The set of properties that are valid after B even if they were invalid before B is said to be "generated by" B and is denoted Gen[B].
- Out[B] = (In[B] Kill[B]) U Gen[B]

Examples

- We gave examples of dataflow analysis:
 - Def-Use chains
 - Use-Def chains
 - Copy propagation
 - Dead variable elimination
 - Available expressions
 - Global subexpression elimination